Secant and cosecant sums and Bernoulli-Nörlund polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secant and Cosecant Sums and Bernoulli-nörlund Polynomials

We give explicit formulae for sums of even powers of secant and cosecant values in terms of Bernoulli numbers and central factorial numbers.

متن کامل

On Bernoulli Sums and Bernstein Polynomials

In the paper we discuss a technology based on Bernstein polynomials of asymptotic analysis of a class of binomial sums that arise in information theory. Our method gives a quick derivation of required sums and can be generalized to multinomial distributions. As an example we derive a formula for the entropy of multinomial distributions. Our method simplifies previous work of Jacquet, Szpankowsk...

متن کامل

Sums of the Even Integral Powers ... Sums of the Even Integral Powers of the Cosecant and Secant

Special finite sums of the even powers of the cosecant and of the secant are studied, ∑ k csc (kπ/N) and ∑ k sec (kπ/N), with positive integers N ≥ 3,m and 1 ≤ k < N/2 . The main result of this article is that these power sums are even polynomials in N , of order 2m, whose coefficients are rational. The approach is based on new differential identities for the functions cscz and secz. The Mittag...

متن کامل

Sums of Products of Generalized Bernoulli Polynomials

In this paper, we investigate the zeta function

متن کامل

On the Multiple Sums of Bernoulli, Euler and Genocchi Polynomials

We introduce and investigate the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials by means of a suitable theirs generating polynomials. We establish several interesting properties of these polynomials. Also, we gave some propositions two theorems and one corollary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quaestiones Mathematicae

سال: 2007

ISSN: 1607-3606,1727-933X

DOI: 10.2989/16073600709486191